102 research outputs found

    Active Discriminative Text Representation Learning

    Full text link
    We propose a new active learning (AL) method for text classification with convolutional neural networks (CNNs). In AL, one selects the instances to be manually labeled with the aim of maximizing model performance with minimal effort. Neural models capitalize on word embeddings as representations (features), tuning these to the task at hand. We argue that AL strategies for multi-layered neural models should focus on selecting instances that most affect the embedding space (i.e., induce discriminative word representations). This is in contrast to traditional AL approaches (e.g., entropy-based uncertainty sampling), which specify higher level objectives. We propose a simple approach for sentence classification that selects instances containing words whose embeddings are likely to be updated with the greatest magnitude, thereby rapidly learning discriminative, task-specific embeddings. We extend this approach to document classification by jointly considering: (1) the expected changes to the constituent word representations; and (2) the model's current overall uncertainty regarding the instance. The relative emphasis placed on these criteria is governed by a stochastic process that favors selecting instances likely to improve representations at the outset of learning, and then shifts toward general uncertainty sampling as AL progresses. Empirical results show that our method outperforms baseline AL approaches on both sentence and document classification tasks. We also show that, as expected, the method quickly learns discriminative word embeddings. To the best of our knowledge, this is the first work on AL addressing neural models for text classification.Comment: This paper got accepted by AAAI 201

    Dating Texts without Explicit Temporal Cues

    Full text link
    This paper tackles temporal resolution of documents, such as determining when a document is about or when it was written, based only on its text. We apply techniques from information retrieval that predict dates via language models over a discretized timeline. Unlike most previous works, we rely {\it solely} on temporal cues implicit in the text. We consider both document-likelihood and divergence based techniques and several smoothing methods for both of them. Our best model predicts the mid-point of individuals' lives with a median of 22 and mean error of 36 years for Wikipedia biographies from 3800 B.C. to the present day. We also show that this approach works well when training on such biographies and predicting dates both for non-biographical Wikipedia pages about specific years (500 B.C. to 2010 A.D.) and for publication dates of short stories (1798 to 2008). Together, our work shows that, even in absence of temporal extraction resources, it is possible to achieve remarkable temporal locality across a diverse set of texts
    • …
    corecore